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Influence of substrate microrelief on the Fréedericksz transition in a thin nematic cell

L. V. Mirantsev
Institute of the Problems of Mechanical Engineering, Academy of Sciences of Russia, St. Petersburg 199178, Russia

~Received 14 October 1998!

An effect of substrate surface regular wavy microrelief on the Freedericksz transition in a thin homeotropi-
cally aligned nematic cell near the smectic-A–nematic second-order transition temperature is theoretically
investigated. It is shown that because of the suppression of an interfacial smectic-A structure, the Fre´edericksz
critical field for the cell with substrates having a sufficiently sharp microrelief should be significantly lower
than that for the cell of the same thickness, but with perfectly flat substrates.@S1063-651X~99!03805-2#

PACS number~s!: 61.30.Cz, 64.70.Md
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I. INTRODUCTION

It is known that an interaction between liquid crystal~LC!
molecules and the boundary surfaces, such as a free su
and a solid substrate, not only gives rise to changes in
entational order in the interfacial LC region, but also induc
interfacial smectic order@1,2#. At present, the existence o
the surface-induced smectic structures in both isotropic
nematic LC phases is well established, and these interfa
structures are the objects of intensive experimental@3–7# and
theoretical@8–11# investigation.

One of the most important problems that arises in s
investigations, is the influence of a solid substrate surf
microrelief ~roughness! on the interfacial smectic structure
In fact, only the free surface of the LC can be considered
a perfectly flat boundary one. In most experimentally rea
able situations, the solid substrate surface always posses
certain natural microrelief. In addition, the substrate surf
microrelief of various shapes can be artificially created,
example, by evaporation of thin films of some oxides~SiO,
GeO, etc.! @12#, or photolitographic techniques@13–15#. In
Refs. @16,17# it has been shown that the regular substr
surface microrelief deforms adjacent smectic layers and
ders a formation of the interfacial smectic structure. Acco
ing to the estimate performed in these papers, the reg
wavy microrelief of periodd;0.5 mm and amplitudeU0
;0.02 mm can suppress almost completely the subst
surface-induced smectic-A (SmA) structure.

One can then ask: how can one check the validity of t
theoretical result? The most detailed information of the
terfacial smectic structure in LC can be obtained from
periments using small-angle x-ray scattering from the
interface@3–5#. However, in most such experiments only t
free surface of LC has been studied, because an x-ray s
of the LC–solid wall interface is very complicated. Neve
theless, in Ref.@18# it has been shown that the existence
absence of the interfacial SmA structure can be revealed in
directly by the well-known Fre´edericksz transition@19,20# in
a very thin homeotropically aligned nematic cell of thickne
h;223 mm. When the interfacial smectic structure
formed near the substrates of such a cell, a transverse e

nal magnetic fieldHW would be unable to deform this surfac
induced smectic region. Then, if the interfacial smectic or
PRE 591063-651X/99/59~5!/5549~7!/$15.00
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penetrates into the nematic bulk for a distance;jP , the
effective thicknessh* of the deformed nematic layer in th
cell would be reduced by order 2jP (h* ;h22jP). Hence,
the Freedericksz transition critical fieldHc , which is directly
proportional to 1/h* , would substantially increase due to th
existence of an interfacial SmA structure in the thin nematic
cell. In fact, an anomalous increase in the critical fieldHc

has been observed in an ultrathin (h'2.6 mm), homeotro-
pically aligned octylcyanobiphenyl~8 CB! cell nearTNA , the
nematic–smectic-A (N–SmA) second-order transition tem
perature, and such behavior can be ascribed to smectic
ering near the substrates@18#.

This result suggests how one can check the validity of
theoretical prediction@16,17# of the suppression of the inter
facial SmA structure in the nematic LC~NLC! by a regular
microrelief on the solid substrate surface. It is necessar
measure the Fre´edericksz critical field in the vicinity of the
second-order N–SmA phase transition in two homeotrop
cally aligned nematic cells of the same thicknessh;2
23 mm. The first cell should have substrates with perfec
flat surfaces, and in the second one the substrate surf
should possess a sufficiently sharp regular microrelief. If
Freedericksz critical field for the first cell is higher than th
for the second one, the validity of the above theoretical
sults could be confirmed. One can, however, ask: How sh
should the regular microrelief be~i.e., how large, or small,
should be the periodd and the amplitudeU0) to result in a
difference between the critical fields for the two above ce
to exceed achievable (;1% @18#! measurement accuracy
How close must we approach the bulk N–SmA transition
temperature to detect the effect of the interfacial smecticA
structure on the Fre´edericksz transition critical field? In orde
to answer these questions, we have to investigate theo
cally the influence of the smectic-A structure, which is in-
duced by the solid substrate surface with regular microre
in NLC, on the Fre´edericksz transition. Such a theoretic
investigation is an aim of the present paper.

We start in the next section with a description of t
smectic-A phase induced by the substrate surface with re
lar wavy microrelief in NLC. This description is a modifie
version of the oversimplified theory proposed in Re
@16,17#. In Sec. III the results obtained in Sec. II are used
a calculation of the Fre´edericksz critical field for a thin nem
5549 ©1999 The American Physical Society
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5550 PRE 59L. V. MIRANTSEV
atic cell with due regard for the deformed surface-induc
SmA structure. Section IV presents the results of numer
calculation of the critical field followed by a discussion.

II. DESCRIPTION OF THE Sm A PHASE
INDUCED BY A DEFORMED SURFACE IN NLC

Let us consider the nematic layer in contact with the so
substrate surface having a wavy microrelief described b
one-dimensional harmonic function, for example,

U0~x!5U0 cos@~2p/d!x#, ~1!

whereU0 andd are the amplitude and period of the surfa
microrelief, respectively. The NLC layer is assumed to
homeotropically aligned~in the bulk sample the directornW is
parallel to thez axis, normal to the substrate surface!. Let us
also assume that our LC sample is in the vicinity of t
second order N-SmA phase transition~the NLC temperature
is slightly above the transition point! and the orientationa
order is perfect~the orientational order parameterS51, i.e.,
the long axes of all molecules are parallel to the directornW ).
The latter assumption is reasonable enough because
LC’s undergo a second order N-SmA phase transition suffi-
ciently far from the clearing point and the actual orien
tional order is very close to perfect.

Let us assume that due to the interaction between
sogenic molecules and the substrate surface the latter ind
a positionally ordered SmA structure with a period equal t
the molecular lengthl. If the molecules within the first inter
facial smectic layer are assumed to be rigidly anchored to
substrate surface, then this layer should be distorted by
substrate sinusoidal relief, and this distortion due to the sm
smectic layer compressibility can be transmitted to
neighboring layers. It is clear that the deformation of t
interfacial smectic structure should affect its translational
der, i.e., the value of the smectic order parameter. On
other hand, the depth of penetration of the surfa
microrelief-induced deformation depends on the sme
layer compressibility, which is determined in turn by th
translational order of the interfacial smectic structure. Th
to describe completely the LC region near the substrate
face with a microrelief we must determine simultaneou
the interfacial smectic order-parameter profile and the p
etration of the surface microrelief-induced deformation in
the sample bulk.

In order to solve this problem we must know the expr
sion for the free energy density in the interfacial LC lay
This expression should contain two contributions. The fi
contribution is the free energy density of the deformed ne
atic liquid crystal@19,20#

f N5~K1/2!~div nW !21~K2/2!~nW •rotnW !21~K3/2!~nW 3rotnW !2,
~2!

whereK1,2,3 are the Frank splay, twist, and bend elastic co
stants, respectively. If the substrate surface wavy defor
tion is assumed to be weak enough@(2p/d)U0!1#, then the
director components are related to the one-dimensional w
deformationU(x,z) by the equations
d
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nx'2]U/]x, ny50, nz'1. ~3!

Substituting these relations into Eq.~2! one obtains

f N'~K1/2!~]2U/]x2!21~K3/2!~]2U/]x]z!2. ~4!

It should be noticed that since the temperature of the
under consideration is in the vicinity of the second ord
N–SmA phase transition, the bend elastic constantK3 in Eq.
~4! is not similar to that in the pure nematic phase. Near
second-order N–SmA transition point the smectic short
order fluctuations occur in the nematic bulk phase. Th
smectic order fluctuations are not induced by the subst
surface and must be considered separately from the surf
induced smectic structure. As it will be seen below, they g
rise to a renormalization of the elastic constantK3.

The second contribution is the free energy density of
surface-induced SmA phase. Ifs(z) is the smectic order
parameter andU(x,z) is the shift of smectic layers due to th
substrate surface microrelief, then the surface-indu
smectic-A phase in the vicinity of the second-order N–SmA
phase transition is described by the density wave

r~x,z!5r0$11s~z!cos@2p„z2U~x,z!…/ l #%, ~5!

where r0 is the average density of the liquid crystal mo
ecules, and the free-energy density of the SmA phase is
given by the Landau–de Gennes expression:

f SmA5~A/2!s21~C/4!s41~L/2!~ds/dz!2

1~B/2!~]U/]z!2, ~6!

where A5a(T2TNA), a and C are the temperature
independent constants,T is the temperature of the system
TNA is the N–SmA phase transition temperature,L is the
elastic constant which, in the framework of a mean-fie
theory, determines the longitudinal correlation lengthj for
smectic fluctuations in the vicinity of the second-ord
N–SmA phase transition as@19,20#

j5~L/A!1/2, ~7!

andB is the smectic layer compressibility. It should be not
that the two gradient terms in Eq.~6! are due to the coordi-
nate dependence of the absolute value of the smectic o
parameters and the smectic layer elastic deformation, r
spectively. Further, according to Ref.@20#, the smectic layer
compressibilityB can be represented as

B5B0s2, ~8!

and the elastic constantB0 is related to the constantL by the
equation

B05L~2p/ l !2. ~9!

Adding expressions~4! and ~6! and taking into accoun
Eq. ~8! one can obtain the following equation for the tot
free energy density of the LC layer near the deformed s
strate surface
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f 5 f N1 f SmA5~K1/2!~]2U/]x2!21~K3/2!~]2U/]x]z!2

1~A/2!s21~C/4!s41~L/2!~ds/dz!2

1~B0/2!s2~]U/]z!2. ~10!

In order to determine the total free energy of the inter
cial region we must integrate the free energy density~10!
over the space above the substrate surface and add to
result the energy of direct interaction between the liq
crystal molecules and the substrate. In previous papers o
surface-induced smectic-A phase@8,9# this interaction was
simulated by a short-range orienting field which acts direc
only on the molecules in contact with the boundary surfa
The energy of such an interaction can be written as

G~z,q!52G0~3/2 cos2q21/2!d„z2U0~x!…,

whereq is the angle between long axes of the LC molecu
and the normal to the boundary surface,G0 is the interaction
constant, andd„z2U0(x)… is a well-known Dirac function.
Since the orientational order in the system under consi
ation is assumed to be perfect (cosq→1) this potential can
be represented as

G~z!52G0d„z2U0~x!…, ~11!

and the energy of interaction per unit substrate squar
equal to

Fs5E
0

`

G~z!r~x,z! dz52G0r02G0r0s0 , ~12!

wheres0 is the value of the smectic order parameter at
substrate surface. Finally, the total free energy of the
interfacial layer per unit substrate square can be represe
as

F5E
0

`

f̄ ~z! dz2G0r02G0r0s0 , ~13!

where f̄ (z) is the free energy density of the LC interfaci
layer averaged over theXY plane. If we take the expressio
for U(x,z) in the form

U~x,z!5U~z!cos@~2p/d!x#,

U~x,z!uz505U0cos@~2p/d!x#, ~14!

then the expression forf̄ (z) is the following:

f̄ 5~A/2!s21~C/4!s41~L/2!~ds/dz!2

1~B0/4!s2~dU/dz!21~K1/4!~2p/d!4U2

1~K3/4!~2p/d!2~dU/dz!2. ~15!
-
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Substituting Eq.~15! into expression~13! for the total free
energy of the interfacial layer and minimizing the latter wi
respect tos(z), U(z), and s0, we obtain the following
Euler-Lagrange equations:

L~d2s/dz2!2As2Cs32~B0/2!s~dU/dz!250, ~16!

d

dz
@~B0/2!s2~dU/dz!#1~K3/2!~2p/d!2~d2U/dz2!

2~K1/2!~2p/d!4U50, ~17!

and the boundary condition

] f̄

]~]s/]z!
U

z50

52G0r0 . ~18!

A solution of Eqs.~16!, ~17! with boundary condition
~18!, as well as under the condition of complete decay
both the interfacial smectic structure and the substrate
face microrelief-induced deformation with penetration in
the nematic bulk (s→0, ds/dz→0, U→0, dU/dz→0 at
z→`), determines the interfacial smectic order parame
profile and the deformation. Because of their nonlinear
however, these equations can be solved only numerica
Nevertheless, let us attempt to obtain the approximative a
lytical solution. We can use the following approach. Even
a perfectly flat substrate, the surface-induced smectic o
should decay with penetration into the nematic bulk a
distance of order of the longitudinal correlation lengthj for
smectic fluctuations@21#. According to experimental data
@22#, at a temperature about 0.1 K higher above the seco
order N–SmA phase transition, this correlation length is
order 0.1mm. On the other hand, if the period of the su
strate surface wavy reliefd is of order of 1mm, then the
depth of the penetration of the surface-induced deforma
into the nematic bulk should be of the same order@19#.
Therefore it is reasonable to assume thats(z) must decay
rapidly in comparison withU(z), or s(z) is a rapidly vary-
ing function andU(z) is a slowly varying one. Then in the
third term of Eq.~17! U(z) can be approximately considere
as a constant value, and one can setU(z)'U0. The subse-
quent integration of this equation over any intervalz22z1
within a region of the existence of the interfacial SmA phase
yields

@B0s2~z1!1K3~2p/d!2#~dU/dz1!

'@B0s2~z2!1K3~2p/d!2#~dU/dz2!

2K1~2p/d!4U0~z22z1!. ~19!

If at the point z2 the interfacial smectic order decaye
sufficiently @s(z2)'0#, then dU/dz2 can be determined
from the equation

dU/dz252~K1 /K3!1/2~2p/d!U, ~20!

which describes the decay of a wavy deformation in the
meotropically aligned NLC@19#. Hence,
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@B0s2~z1!1K3~2p/d!2#~dU/dz1!

'2~K1K3!1/2~2p/d!3U02K1~2p/d!4U0~z22z1!,

~21!

and the ratio of the second term on the right-hand side of
~21! to the first one is equal to (K1 /K3)1/2@2p(z22z1)/d#.
Since the depth of penetration of the interfacial smectic or
into the nematic bulk should be an order of magnitu
smaller than the periodd, and near the second-order N–SmA
phase transition, the bend elastic constantK3 is significantly
larger than the splay elastic constantK1 @19,20#, and the
value of this ratio should be much smaller than unity. In t
situation the second term on the right-hand side of Eq.~21!
can be omitted. This yields

~dU/dz!'2
~K1K3!1/2~2p/d!3U0

@B0s2~z!1K3~2p/d!2#
. ~22!

Substituting this approximate expression into Eq.~15!,
one can integrate it once and obtain the solution

~ds/dz!'2AW~s,U0 ,d!, ~23!

where

W~s,U0 ,d!5j22s21C* s41~K1/2L !~2p/d!4U0
2

3$12@~B0 /K3!~d/2p!2s211#21%,

~24!

and C* 5C/2L. From Eq.~23! one can deduce directly th
equation

z5E
s~z!

s0 ds

AW~s,U0 ,d!
, ~25!

which determines the surface-induced smectic ord
parameter profiles(z). Combining Eq.~22! with the bound-
ary condition~18! and taking into account that

] f̄

]~]s/]z!
U

z50

5L
ds

dzU
z50

, ~26!

one can easily derive the algebraic equation

W~s0 ,U0 ,d!5~G0r0 /L !2, ~27!

which determines the values0 of the smectic order param
eter at the substrate surface.

The relations obtained above allow us to determine
smectic order-parameter profile that describes the interfa
SmA structure near the solid substrate surface with a reg
wavy microrelief in the vicinity of the second-order N–SmA
phase transition. Such profiles, obtained for different val
of the amplitudeU0 and fixed periodd51 mm of the mi-
crorelief, are shown in Fig. 1. The numerical calculation h
been performed with the following values of parameters:
q.

er
e

s

r-

e
ial
ar

s

s

(T2TNA)/TNA51024; TNA'307 K; j50.16 mm; K1

51026 dyn; l 5331027 cm ~data for LC 8CB from Ref.
@22#!; C* '1200@23#. The magnitude ofB0 has been deter
mined from the relationshipB0 /K1'1/l 2 @19,20#, and the
ratio K3 /K1 has been taken as

K3 /K1'11~kBT/6!~pj /l
2K1!, ~28!

where kB is the Bolzmann constant. This equation can
obtained by using the results of Ref.@24#, which deals with
the effect of the short range smectic order fluctuations in
bulk nematic phase in the vicinity of the second-ord
N–SmA phase transition on the bend elastic constantK3. As
for value of the parameterG0r0 /L, its choice must be some
what arbitrary because we have no detailed information
the direct interaction between the LC molecules and the s
strate surface. Therefore, this parameter has been chos

FIG. 2. Dependence of the smectic order parameter at the
strate surfaces0 on the amplitudeU0 of the wavy microrelief.d
51 mm.

FIG. 1. The interfacial smectic order-parameter profiles for va
ous amplitudes of the substrate surface microrelief.d51 mm. 1,
U050; 2, U050.01 mm; 3, U050.02 mm; 4, U050.03 mm; 5,
U050.04 mm; 6, U050.05 mm; 7, U050.06 mm.
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PRE 59 5553INFLUENCE OF SUBSTRATE MICRORELIEF . . .
provide a reasonable value, for examples050.5, of the
smectic order parameter at the perfectly flat substrate sur
(U050). From Fig. 1 it is clearly seen that the substra
surface deformation gives rise to the suppression of the
terfacial smectic-A structure, and the sharper the substr
surface microrelief~the larger the amplitudeU0 at the fixed
periodd), the ‘‘weaker’’ the interfacial smectic order. Bot
the smectic order parameters0 at the substrate surface~see
Fig. 2! and the penetration depthjP of the smectic order into
the nematic bulk@jP is the distance from the substrate
which the smectic order parameters(z) is e times smaller
than s0] ~see Fig. 3! decrease with increasing microrelie
amplitudeU0. From Fig. 3 it is also seen that the depthjP
decays almost linearly withU0.

III. CALCULATION OF FRE ´ EDERICKSZ TRANSITION
CRITICAL FIELD FOR NLC CELL WITH DUE

REGARD FOR SmA PHASE INDUCED BY THE
SUBSTRATE SURFACE WITH REGULAR MICRORELIEF

Let us consider a thin homeotropically aligned NLC c
which is placed into a homogeneous magnetic fieldHW per-
pendicular to the nematic directornW . When the magnetic
field achieves a certain critical valueHc , the directornW re-
orients in what is commonly known as a Fre´edericksz tran-
sition @19,20#. In a ‘‘pure’’ homogeneous NLC cell, i.e.
without the interfacial smectic layering, the critical field
equal to

Hc* 5
p

h S K3

xa
D 1/2

, ~29!

where xa is the LC magnetic susceptibility anisotropy. A
discussed in the Introduction, when interfacial smectic lay
ing is induced by the substrate surface in the NLC cell,
additional hindrance to the director reorientation appears
results, in turn, in an increase of the critical fieldHc .

FIG. 3. Dependence of the depth of penetration of the surfa
induced smectic order into the nematic bulk on the amplitude of
wavy microrelief.d51 mm; (T2TNA)/TNA51024.
ce

n-
e

l

r-
n
at

A simple way to take into account the effect of the su
strate surface-induced smectic-A structure on the critical
field Hc has been offered in Ref.@18#. Since a tilt of the
directornW by a small angleq relative to its initial homeotro-
pic orientation is accompanied by deformation of the int
facial smectic layering, the well-known expression for t
elastic deformation energy density of the homeotropica

aligned NLC in a transverse magnetic fieldHW @19,20# should
be supplemented by an interfacial smectic layer deforma
energyD(z)q2, whereD(z) is a parameter which, like the
smectic layer compressibilityB, is proportional tos2 @18#.
This parameter plays the role of an ‘‘additional stabilizin
field,’’ which has a maximum strength near the substrates
the cell. Then, taking into account the symmetry of the c
with respect to its center (z5h/2), the total elastic deforma
tion energy of the sample can be written as@18#

Fd5E
0

h/2

@K3~dq/dz!22xaH2q21D~z!q2# dz, ~30!

whereK3 andxa are assumed to be spatially uniform.
In order to determine the Fre´edericksz critical fieldHc as

a function of the cell thicknessh and the temperatureT, we
must choose a suitable dependence forq(z) which is ~1!
symmetrical with respect to the center of the cell, and~2!
satisfies the boundary condition of rigid LC-substrate a
choring, namely,

q~z50!5q~z5h!50. ~31!

Then one can expandq(z) in a Fourier series

q~z!5 (
n51

`

qn sinS pn

h
zD , ~32!

and, as in Ref.@19#, retain only the first term of this expan
sion, i.e.,

q~z!'q0 sinS p

h
zD . ~33!

Inserting this expression into Eq.~30!, we obtain the nem-
atic deformation energy per unit square of the substrate

Fd'
q0

2h

4 F S K3

p2

h2
2xaH2D

1~4/h!E
0

h/2

D~z!sin2S p

h
zDdzG . ~34!

As mentioned above, the parameterD(z) should be pro-
portional tos2, and, hence, it can be written asD0s2(z),
whereD0 is a certain elastic constant which determines
hardness of the smectic layers to the tilt of the directonW
relative to the layer normal.

When the magnetic fieldH is lower than the critical value
Hc , the nondistorted state of the sample is stable, and
deformation energyFd must be positive for anyq0Þ0. Then
the critical fieldHc can be determined from a conditionFd
50, which yields

e-
e
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Hc
25

K3p2

xah2 F114
D0h

K3p2E0

h/2

s2~z!sin2S p

h
zDdzG . ~35!

The ratio ofHc to the Fréedericksz critical fieldHc* for a
‘‘pure’’ and homogeneous nematic sample, i.e., without
interfacial smectic structure, is equal to

Hc /Hc* 5A114
D0h

K3p2E0

h/2

s2~z!sin2S p

h
zDdz. ~36!

If we remember that the surface-induced smectic order
most completely decays at a distance from the substrat
the order of;jP;0.1m, and the thicknesss of even ‘‘ultra
narrow’’ cells used in@18# was h;223 mm, then in the
integral in the right-hand side of Eq.~36! sin2@(p/h)z# can be
approximately written as'(p2/h2)z2, and the ratioHc /Hc*
can be represented as

Hc /Hc* 'A114
D0

K3hE0

`

s2~z!z2 dz. ~37!

From Eq. ~37! it is clearly seen that the influence of th
interfacial smectic structure on the Fre´edericksz critical field
can be significant only for sufficiently thin cells, because,
thick cells (h→`), the right-hand side of this equation go
to unity, i.e., the critical field for a ‘‘thick’’ NLC sample
with interfacial smectic layers is indistinguishable from th
for a ‘‘pure’’ nematic sample of the same thickness. Fina
if the integral term on the right-hand side of Eq.~37! is
assumed to be much less than unity, then the ratioHc /Hc*
can be approximated as

Hc /Hc* '112
D0

K3hE0

`

s2~z!z2 dz. ~38!

By analogy with Ref.@18#, one can also define the quanti
V5Hc /Hc* 21:

V'2
D0

K3hE0

`

s2~z!z2 dz. ~39!

IV. RESULTS OF NUMERICAL CALCULATION
AND DISCUSSION

As seen from Eq.~39!, to calculate the temperature d
pendence of the parameterV, we must know, in addition to
the smectic order-parameter profiles(z) and the temperature
dependence of the elastic constantK3, the magnitude of the
parameterD0. This magnitude we can determine as follow
Taking the cell thickness, as in Ref.@18#, to be equal toh
'2.5 mm, and assuming the cell substrates to be perfe
flat (U050), we determine the parameterD0 such that we
obtain the valueV at certain temperatureT, say 0.2 K higher
thanTNA , similar to that found experimentally. From Fig.
in Ref. @18# one can findV(T5TNA10.2 K)'0.13. For
this value ofV we findD055.53106 erg/cm3. Such a value
of D0 can be used in a numerical calculation ofV at any
e
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temperatureT for both cells with perfectly flat substrates an
that with substrates having the wavy microrelief. The te
perature dependence of the parameterV calculated in such a
manner for the cell with perfectly flat substrates (h52.5mm!
is shown in Fig. 4. For comparison, the experimental d
from Ref.@18# are also brought here. It is easily seen that
results of the calculation are in a satisfactory agreement w
the experimental ones.

Analogous dependences calculated for different value
the amplitudeU0 of the wavy microrelief on the substrat
surface (d51 mm! are shown in Fig. 5. From this figure on
can conclude that the effect of the interfacial SmA structure
on magnitude of the Fre´edericksz critical field can be de
tected if the temperature of the system under investigatio
lower than;TNA11 K. In the opposite case, the parame
V is smaller than the actually achievable (;1% @18#! accu-
racy of a measurement of the critical field. Figure 5 a

FIG. 4. Temperature dependence of the parameterV for the cell
with perfectly flat substrates.h52.5 mm; D055.53106 erg/cm3.
~* ! indicate experimental points from Ref.@18#.

FIG. 5. Temperature dependences of the parameterV for dif-
ferent values of the amplitude of the wavy microrelief.d51mm. 1,
U050; 2, U050.01 mm; 3, U050.015 mm; 4, U050.02 mm; 5,
U050.03 mm.
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demonstrates a strong decay ofV with increasingU0, and
the closer the sample to the bulk N–SmA transition point,
the larger the difference inV for the cell with flat substrates
and for that with substrates having the microrelief. For e
ample, for T5TNA10.2 K, the parameterV for the cell
with flat substrates is equal to 0.13, whereas forU0
50.01 mm, V50.07; for U050.015 mm, V50.045; for
U050.02 mm, V50.03; and finally, forU0>0.03 mm,
V,0.01. Consequently, in the vicinity of the bulk N–SmA
phase transition temperature, the critical fieldHc for the thin
cell with substrates having a sufficiently sharp wavy m
crorelief should be similar to that for the Fre´edericksz tran-
sition in a ‘‘pure’’ and homogeneous nematic sample of
same thicknessh.

Thus, by observing the Fre´edericksz transition near th
bulk N– SmA transition temperature (T;TNA10.2 K) in
two homeotropically oriented 8 CB cells of the same thic
M

llo

t.

. A

tt

ir
-

-

e

-

nessh;2.5 mm, one of which has perfectly flat substrate
and another has substrates with regular wavy microre
(U0;0.03 mm, d;1 mm!, we should find the critical field
for the first cell to be about 13% higher than that for t
second one. This difference in magnitude ofHc is much
larger than the achievable experimental accuracy of
Fréedericksz critical field, and its detection could be cons
ered as a confirmation of the theory@16,17# which predicts
suppression of the interfacial smectic-A ~SmA! structure by
the regular microrelief on the solid substrate surface.
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